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Abstract: Fourier series have important application in ordinary differential equations evolving from practical 

applications of Physics and engineering. The coefficients of Fourier series were obtained by means of integration 

from the series. Thereafter, they were applied to spring-mass systems which were acted on by a forcing function. It 

was demonstrated with examples that it is possible to obtain the transient and steady-state solution of any given 

mass-spring problem when acted upon by an external force to produce oscillation. 
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I.   INTRODUCTION 

Real life phenomena such as heart beat, the motion of electrical charges, the movement of a pendulum and both rotation 

and revolution of the earth are typical examples of phenomena that repeats at regular intervals. Thus, the mathematical 

expression of these phenomena as function 𝑓 repeating at regular intervals of the independent variable are known as periodic 

functions. These functions are best treated with Fourier series and Fourier transforms. 

Fourier series is a representation of infinite series that are designed to represent general periodic functions by means of 

simpler ones (sines and cosines). The orthogonality of trigonometric functions enables the computation of the coefficients 

of the Fourier series with by means of Euler formulas.  

Fourier series play vital role in in the solution of ODEs resulting from damped oscillations. Similarly, Fourier series find 

application in PDEs as some discontinuous periodic functions do not have Taylor series representation and are best handled 

by Fourier series. [1] 

Definition: A function 𝑓(𝑥) is said to be periodic with period 𝑝 if there exists a positive number  𝑝 such that 

 𝑓(𝑥 + 𝑝) = 𝑓(𝑥) [1], [6], [7]. 

 In this work we explore the development of Fourier series and apply it spring-mass oscillations with forcing function. 

II.   THE FOURIER SERIES 

Consider the series of a periodic function trigonometrically expressed as  

𝑎0 + 𝑎1𝑐𝑜𝑠(𝑥) + 𝑏1𝑠𝑖𝑛(𝑥) + 𝑎2𝑐𝑜𝑠(2𝑥) + 𝑏2𝑠𝑖𝑛(2𝑥) + 𝑎3𝑐𝑜𝑠(3𝑥) + 𝑏3𝑠𝑖𝑛(3𝑥) +⋯                            (1) 

Then (1) can be expressed as 

𝑓(𝑡) = 𝑎0 + ∑ (𝑎𝑛𝑐𝑜𝑠 (
𝑛𝜋𝑡

𝐿
) + 𝑏𝑛𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
))∞

𝑛=1                                                                                                     (2)  
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where 𝑎0, 𝑎𝑛 and 𝑏𝑛 are coefficients to be determined.   

Integrating (2) we have  

∫ 𝑓(𝑡)
𝐿

−𝐿
𝑑𝑥 = 𝑎0 ∫ 𝑑𝑡

𝐿

−𝐿
+ ∑ (𝑎𝑛 ∫ 𝑐𝑜𝑠 (

𝑛𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑑𝑡 + 𝑏𝑛 ∫ 𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑑𝑡)∞

𝑛=1                                                      (3)  

Since 𝑐𝑜𝑠 (
𝑛𝜋𝑡

𝐿
) and 𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
) are orthogonal for 𝑛𝜖𝑍+on the interval (−𝐿, 𝐿)  (**) becomes  

 ∫ 𝑓(𝑡)
𝐿

−𝐿
𝑑𝑥 = 𝑎0𝑥|−𝐿

𝐿 = 2𝐿𝑎0 hence 

𝑎0 =
1

2𝐿
∫ 𝑓(𝑡)
𝐿

−𝐿
𝑑𝑥                                                                                                                                                             (4)  

Multiplying (*) by 𝑐𝑜𝑠 (
𝑚𝜋𝑡

𝐿
) and integrating gives  

∫ 𝑓(𝑡)
𝐿

−𝐿
𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
) 𝑑𝑥 = 𝑎0 ∫ 𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
) 𝑑𝑡

𝐿

−𝐿
  

                                        +∑ (𝑎𝑛 ∫ 𝑐𝑜𝑠 (
𝑚𝜋𝑡

𝐿
) 𝑐𝑜𝑠 (

𝑛𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑑𝑡 + 𝑏𝑛 ∫ 𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑑𝑡) ∞

𝑛=1                  (5)   

Using the conditions 

{
 
 

 
 ∫ 𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
) 𝑑𝑡

𝐿

−𝐿
= 0,𝑚 > 0                           

∫ 𝑠𝑖𝑛 (
𝑛𝜋𝑡

𝐿
) 𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑑𝑡 = 0                        

∫ 𝑐𝑜𝑠 (
𝑚𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑐𝑜𝑠 (

𝑛𝜋𝑡

𝐿
) 𝑑𝑡 = {

𝐿,        𝑚 = 𝑛
0, 𝑚 ≠ 𝑛

                                                                                                            (6)  

So that from (6) 

∫ 𝑓(𝑡)
𝐿

−𝐿
𝑐𝑜𝑠 (

𝑛𝜋𝑡

𝐿
) 𝑑𝑥 = ∑ (𝑎𝑛 ∫ 𝑐𝑜𝑠 (

𝑛𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
) 𝑑𝑡 + 𝑏𝑛 ∫ 𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
) 𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑑𝑡)∞

𝑛=1    

∫ 𝑓(𝑡)
𝐿

−𝐿
𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
) 𝑑𝑥 = 𝑎0 ∫ 𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
) 𝑑𝑡

𝐿

−𝐿
  

                                           +∑ (𝑎𝑛 ∫ 𝑐𝑜𝑠 (
𝑛𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
) 𝑑𝑡 + 𝑏𝑛 ∫ 𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
) 𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑑𝑡)∞

𝑛=1    

 

∫ 𝑓(𝑡)
𝐿

−𝐿
𝑐𝑜𝑠 (

𝑛𝜋𝑡

𝐿
) 𝑑𝑡 = 𝑎𝑛𝐿,           

𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑡)
𝐿

−𝐿
𝑐𝑜𝑠 (

𝑛𝜋𝑡

𝐿
) 𝑑𝑡                                                                                                                                             (7)  

Similarly, Multiplying (2) by 𝑠𝑖𝑛 (
𝑚𝜋𝑡

𝐿
) and integrating gives  

∫ 𝑓(𝑡)
𝐿

−𝐿
𝑠𝑖𝑛 (

𝑚𝜋𝑡

𝐿
) 𝑑𝑥 = 𝑎0 ∫ 𝑠𝑖𝑛 (

𝑚𝜋𝑡

𝐿
) 𝑑𝑡

𝐿

−𝐿
  

                                    +∑ (𝑎𝑛 ∫ 𝑠𝑖𝑛 (
𝑚𝜋𝑡

𝐿
) 𝑐𝑜𝑠 (

𝑛𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑑𝑡 + 𝑏𝑛 ∫ 𝑠𝑖𝑛 (

𝑚𝜋𝑡

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑑𝑡)∞

𝑛=1                         (8)  

Using the conditions 

{
 
 

 
 ∫ 𝑠𝑖𝑛 (

𝑚𝜋𝑡

𝐿
) 𝑑𝑡

𝐿

−𝐿
= 0,𝑚 > 0                           

∫ 𝑠𝑖𝑛 (
𝑛𝜋𝑡

𝐿
) 𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑑𝑡 = 0                        

∫ 𝑠𝑖𝑛 (
𝑚𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
) 𝑑𝑡 = {

𝐿,        𝑚 = 𝑛
0, 𝑚 ≠ 𝑛

                                                                                                            (9)  

we obtain 

∫ 𝑓(𝑡)
𝐿

−𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
) 𝑑𝑡 = ∑ (𝑏𝑛 ∫ 𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
) 𝑐𝑜𝑠 (

𝑚𝜋𝑡

𝐿
)

𝐿

−𝐿
𝑑𝑡)∞

𝑛=1    

∫ 𝑓(𝑡)
𝐿

−𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
) 𝑑𝑡 = 𝑎0 ∫ 𝑠𝑖𝑛 (

𝑚𝜋𝑡

𝐿
) 𝑑𝑡

𝐿

−𝐿
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∫ 𝑓(𝑡)
𝐿

−𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
) 𝑑𝑡 = 𝑏𝑛𝐿,           

𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑡)
𝐿

−𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑡

𝐿
) 𝑑𝑡                                                                                                                                            (10)   

Hence (4), (7) and (10) give the coefficients of the Fourier series 

{
 
 

 
 𝑎0 =

1

2𝐿
∫ 𝑓(𝑡)𝑑𝑡
𝐿

−𝐿
                                              

𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑡)
𝐿

−𝐿
𝑐𝑜𝑠 (

𝑛𝑡𝜋

𝐿
) 𝑑𝑥, 𝑛 = 1,2,3,⋯ 

𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑡)
𝐿

−𝐿
𝑠𝑖𝑛 (

𝑛𝑡𝜋

𝐿
) 𝑑𝑡,   𝑛 = 1,2,3,⋯ 

    [8], [9]. 

III.   THE SPRING-MASS PROBLEM 

Consider a spring-mass system with mass 𝑚. If an external force, or the forcing function,  𝐹(𝑡) acts on the system, causing 

a displacement 𝑥 units from equilibrium and 𝑘 the spring constant, then by Newton’s Second Law, we obtain the second 

order Ordinary Differential Equation (ODE) 

𝑚𝑥′′ + 𝛾𝑥′ + 𝑘𝑥 = 𝐹(𝑡)                                                                                                                                              (11)   

With the initial conditions 

𝑥(0) = 𝑥0            initial displacement from equilibrium position 

𝑥′(0) = 𝑥′0         initial velocity 

whose natural frequency 𝜔0 is defined as 𝜔0 = √𝑘/𝑚 , a non-homogenous second order ODE where 𝑥 is the displacement 

from equilibrium and 𝐹(𝑡) is the applied external force in a mass-spring system [2], [3].  

The solution of the above equation will be of the form  𝑦(𝑡) = 𝑐1𝑦1(𝑡) + 𝑐2𝑦2(𝑡) + 𝑦𝑃(𝑡) which can be succinctly written 

as 

𝑦(𝑡) = 𝑦𝑐(𝑡) + 𝑦𝑃(𝑡)                                                                                                                                                    (12) 

where 𝑦𝑐(𝑡) and 𝑦𝑃(𝑡) are the transient and steady-state solution respectively. 

and constants 𝑐1 and 𝑐2 are determined by the initial condition of (12) [6]. 

𝐹(𝑡) and 𝑦(𝑡) are the input and response respectively. If for all values of 𝑐1 and 𝑐1,  

𝑐1𝑦1(𝑡) + 𝑐2𝑦2(𝑡) → 0 as 𝑡 → ∞, the system (2) is said to be stable and 𝑦𝑃(𝑡) is called the steady state solution of (12).  

Since the system (11) is such that the auxiliary equation will be of the form 𝑟2 = −𝑘,  𝑟 will have complex roots, yielding 

the general solution 

 𝑦(𝑡) = 𝑐1𝑐𝑜𝑠(𝜔0) + 𝑐2𝑠𝑖𝑛(𝜔0) + 𝑦𝑃(𝑡)                                                                                                                 (13) 

where 𝑦𝑐(𝑡) = 𝑐1𝑐𝑜𝑠(𝜔0) + 𝑐2𝑠𝑖𝑛(𝜔0) is the complimentary function and  𝑦𝑃(𝑡), the particular solution of (1)  

 𝑦𝑃(𝑡) can be obtained by defining it in terms of Fourier series as   

𝑦𝑃(𝑡) = 𝑎0 + ∑ (𝑎𝑛𝑐𝑜𝑠 (
𝑛𝑡𝜋

𝐿
) + 𝑏𝑛𝑠𝑖𝑛 (

𝑛𝑡𝜋

𝐿
))∞

𝑛=1                                                                                                  (14)  

where 𝐹(𝑡) in (1) has period 2𝐿  and is assumed to be piecewise smooth [3], [4], [5].  

 If we assume 𝐿 = 𝜋, (1) becomes  

𝑓(𝑡) = 𝑎0 + ∑ (𝑎𝑛𝑐𝑜𝑠(𝑛𝑡) + 𝑏𝑛𝑠𝑖𝑛(𝑛𝑡))
∞
𝑛=1                                                                                                          (15)  

and (3)-(5) are defined as  

𝑎0 =
1

2𝜋
∫ 𝑓(𝑡)𝑑𝑡
𝜋

−𝜋
                                                                                                                                                         (16)  

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑡)
𝜋

−𝜋
𝑐𝑜𝑠𝑛𝑡𝑑𝑡, 𝑛 = 1,2,3,⋯                                                                                                                    (17)  

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑡)
𝜋

−𝜋
𝑠𝑖𝑛𝑑𝑡,   𝑛 = 1,2,3,⋯                                                                                                                        (18)  
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IV.   APPLICATION 

We hereby apply Fourier series to obtain forcing function 𝐹(𝑡) In the first example, the forcing function is periodic while 

in the second example, it is non-periodic. 

Example 1:   

Let 𝐹(𝑡) be an external force causing a displacement 𝑥 from equilibrium of an undamped spring-mass system yielding the 

ODE  𝑥′′(𝑡) + 9𝑥(𝑡) = 𝐹(𝑡), 𝑥(0) = 0, 𝑥′(0) = 1. Find the general solution of the ODE where 𝐹(𝑡) is defined as  

𝑥′′(𝑡) + 9𝑥(𝑡) = 𝐹(𝑡),    𝐹(𝑡) =    

{
 

 
0,     − 𝜋 < 𝑡 < −

𝜋

2

4,      −
𝜋

2
< 𝑡 <

𝜋

2

0,          
𝜋

2
< 𝑡 < 𝜋

      

To obtain the solution for 𝑦𝑐𝑓  let 𝑥′′(𝑡) + 9𝑥(𝑡) = 0, that is 𝐹(𝑡) = 0. The auxiliary equation will be  𝑟2 + 9 = 0, 𝑟2 =

−9, 𝑟 = ±3𝑖 giving the complementary function 𝑥𝑐(𝑡) = 𝑐1𝑐𝑜𝑠 3𝑡 + 𝑐2𝑠𝑖𝑛3𝑡 

𝑥𝑐(0) = 𝑐1𝑐𝑜𝑠 (0) + 𝑐2𝑠𝑖𝑛(0) = 0,   𝑐1 = 0,   

 𝑥′𝑐(0) = −3𝑐1𝑠𝑖𝑛 (0) + 3𝑐2𝑐𝑜𝑠(0) = 1,   𝑐2 =
1

3
        

The general solution of the problem is 

𝑥(𝑡) = 𝑐1𝑐𝑜𝑠 3𝑡 + 𝑐2𝑠𝑖𝑛3𝑡 + 𝑥𝑝(𝑡),  

 𝑥(𝑡) =
1

3
𝑠𝑖𝑛3𝑡 + 𝑥𝑝(𝑡) 

𝐹(𝑡) =

{
 

 
0,     − 𝜋 < 𝑡 < −

𝜋

2

4,      −
𝜋

2
< 𝑡 <

𝜋

2

0,          
𝜋

2
< 𝑡 < 𝜋

  

𝑎0 =
1

2𝜋
∫ 𝑓(𝑡)𝑑𝑡
𝜋

−𝜋
       

1

2𝜋
{∫ 0𝑑𝑡

−
𝜋

2
−𝜋

+ ∫ 4𝑑𝑡
𝜋

2

−
𝜋

2

+ ∫ 0𝑑𝑥
𝜋
𝜋

2

} = 4𝑡|
−
𝜋

2

𝜋

2  = 4   

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑡)
𝜋

−𝜋
𝑐𝑜𝑠(𝑛𝑡)𝑑𝑡 =  

1

𝜋
{∫ 0𝑐𝑜𝑠(𝑛𝑡)𝑑𝑡

−
𝜋

2
−𝜋

+ ∫ 4𝑐𝑜𝑠(𝑛𝑡)𝑑𝑡
𝜋

2

−
𝜋

2

+ ∫ 0𝑐𝑜𝑠(𝑛𝑡)𝑑𝑡
𝜋
𝜋

2

}  

   =
4

𝜋
∫ 𝑐𝑜𝑠(𝑛𝑡)𝑑𝑡 
𝜋

2

−
𝜋

2

=
4

𝑛𝜋
𝑠𝑖𝑛(𝑛𝑡)|

−
𝜋

2

𝜋

2
 =

8

𝑛𝜋
𝑠𝑖𝑛 (

𝑛𝜋

2
)   

 

𝑎𝑛 =
8

𝑛𝜋
𝑠𝑖𝑛 (

𝑛𝜋

2
) = {

0,   𝑛 = 2,4,6,⋯
1,   𝑛 = 1,5,9,⋯
−1,   𝑛 = 3,7,11,⋯

  

       𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥)
𝜋

−𝜋
𝑠𝑖𝑛(𝑛𝑡)𝑑𝑡 =  

1

𝜋
{∫ 0𝑠𝑖𝑛(𝑛𝑡)𝑑𝑡

−
𝜋

2
−𝜋

+ ∫ 4𝑠𝑖𝑛(𝑛𝑡)𝑑𝑡
𝜋

2

−
𝜋

2

+ ∫ 0𝑠𝑖𝑛(𝑛𝑡)𝑑𝑡
𝜋
𝜋

2

}    

   =
4

𝜋
∫ 𝑠𝑖𝑛(𝑛𝑡)𝑑𝑡 
𝜋

2

−
𝜋

2

= −
4

𝑛𝜋
𝑐𝑜𝑠(𝑛𝑡)|

−
𝜋

2

𝜋

2
 = −

4

𝑛𝜋
{(−𝑐𝑜𝑠 (

𝑛𝜋

2
)) − (−𝑐𝑜𝑠 (−

𝑛𝜋

2
))}    

𝑏𝑛 = 0 since cosine is even, that is, 𝑐𝑜𝑠(−𝑥) = 𝑐𝑜𝑠(𝑥) 

𝑥𝑝(𝑡) = 4 +
8

𝜋
{𝑐𝑜𝑠𝑡 −

1

3
𝑐𝑜𝑠3𝑡 +

1

5
𝑐𝑜𝑠5𝑡 −

1

7
𝑐𝑜𝑠7𝑡 + ⋯}   

Hence 

 𝑥(𝑡) =
1

3
𝑠𝑖𝑛3𝑡 + 4 +

8

𝜋
{𝑐𝑜𝑠𝑡 −

1

3
𝑐𝑜𝑠3𝑡 +

1

5
𝑐𝑜𝑠5𝑡 −

1

7
𝑐𝑜𝑠7𝑡 + ⋯ }       
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Example 2: 

A 10-kg mass is attached to a spring with a spring constant of 300 N/m is started in motion from the equilibrium position 

with an initial velocity of 1 m/sec in the upward direction and with an applied external force 𝐹(𝑡) = √2𝑡 .Find the 

subsequent motion of the mass if the force due to air resistance is −110𝑥′𝑁  

 

With 𝑚 = 10, 𝑘 = 300, 𝑎 = −110  and 𝐹(𝑡) = √2𝑡 Applying (1) with its initial conditions gives  

  

𝑚𝑥′′ = −𝑘𝑥 − 𝑎𝑥′ + 𝐹(𝑡) 

𝑥′′ +
𝑎

𝑚
𝑥′ +

𝑘

𝑚
=
𝐹(𝑡)

𝑚
 

 

𝑥′′ + 11𝑥′ + 30𝑥 = √2𝑡. 

To obtain the solution for 𝑦𝑐 let 𝑥′′(𝑡) + 11𝑥′ + 30𝑥(𝑡) = 0, that is 𝐹(𝑡) = 0. The auxiliary equation will be  𝑟2 + 11𝑟 +

20 = 0,   𝑟 = −5,−7 giving the complementary function 

 𝑥𝑐(𝑡) = 𝑐1𝑒
−5𝑥 + 𝑐2𝑒

−7𝑥 

Using the initial condition 𝑥(0) = 0, 𝑥′(0) = −1 

𝑥𝑐(0) = 𝑐1 + 𝑐2 = 0,   𝑐2 = −𝑐1   

 𝑥′𝑐(0) = −5𝑐1 − 7𝑐2 = 1,   𝑐1 = −
1

2
,    
1

2
        

The general solution of the problem is 

𝑥𝑐(𝑡) = −
1

2
𝑒−5𝑥 +

1

2
𝑒−7𝑥 

  

 𝑥(𝑡) = −
1

2
𝑒−5𝑥 +

1

2
𝑒−7𝑥 + 𝑥𝑝(𝑡) 

 

𝐹(𝑥) = √2𝑡,   − 𝜋 < 𝑡 < 𝜋 

𝑎0 =
1

2𝜋
∫ 𝑓(𝑡)𝑑𝑡
𝜋

−𝜋
       

1

2𝜋
∫ √2𝑡𝑑𝑡
𝜋

−𝜋
          =

1

2𝜋

𝑡2

2
|
−𝜋

𝜋

          = 0  

   

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑡)
𝜋

−𝜋
𝑐𝑜𝑠(𝑛𝑡)𝑑𝑥 =

1

𝜋
∫ √2𝑡
𝜋

−𝜋
𝑐𝑜𝑠(𝑛𝑡)𝑑𝑡   

     =
√2

𝜋
∫ 𝑡
𝜋

−𝜋
𝑐𝑜𝑠(𝑛𝑡)𝑑𝑡  

Employing integration by parts, we obtain 

𝑎𝑛 =
√2

𝜋
(
1

𝜋

𝑠𝑖𝑛(𝑛𝑡)

𝑛
−

𝑐𝑜𝑠(𝑛𝑡)

𝑛2
|
−𝜋

𝜋

)                     = 0  

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑡)
𝜋

−𝜋
𝑠𝑖𝑛(𝑛𝑡)𝑑𝑡 =

√2

𝜋
(−

𝑡𝑐𝑜𝑠(𝑛𝑡)

𝑛
|
−𝜋

𝜋

+ ∫
𝑡𝑐𝑜𝑠(𝑛𝑡)

𝑛

𝜋

−𝜋
𝑑𝑡)    

      =
1

𝜋
∫ 𝑓(𝑡)
𝜋

−𝜋
𝑠𝑖𝑛(𝑛𝑡)𝑑𝑡 =

√2

𝜋
(−

𝑡𝑐𝑜𝑠(𝑛𝑡)

𝑛
|
−𝜋

𝜋

+
1

𝑛
∫ 𝑡𝑐𝑜𝑠(𝑛𝑡)𝑑𝑡
𝜋

−𝜋
)   
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      =
1

𝜋
∫ 𝑓(𝑡)
𝜋

−𝜋
𝑠𝑖𝑛(𝑛𝑡)𝑑𝑡 =

√2

𝜋
(−

𝑡𝑐𝑜𝑠(𝑛𝑡)

𝑛
+

1

𝑛
(
𝑡𝑠𝑖𝑛(𝑛𝑡)

𝑛
+

𝑐𝑜𝑠(𝑛𝑡)

𝑛2
)|
−𝜋

𝜋

)   

     =
1

𝜋
∫ 𝑓(𝑡)
𝜋

−𝜋
𝑠𝑖𝑛(𝑛𝑡)𝑑𝑡  

      =
2√2(−1)𝑛+1

𝜋
  

𝑥𝑃(𝑡) =
2√2(−1)𝑛+1

𝜋
  

𝑥(𝑡)  = −
1

2
𝑒−5𝑥 +

1

2
𝑒−7𝑥 + 𝑥𝑝(𝑡) 

 𝑥(𝑡) =
1

2
(−𝑒−5𝑥 + 𝑒−7𝑥) +

2√2(−1)𝑛+1

𝜋
  

V.   CONCLUSION 

We have considered in this work the development of the Fourier coefficients which have application in differential 

equations. We have equally applied the series to obtain the forcing functions of two problems considered and expressed the 

entire problem as 𝑦(𝑡) = 𝑦𝑐(𝑡) + 𝑦𝑃(𝑡). We were able to express both forcing functions in terms of Fourier series which 

gives the complementary function as transient solution and the particular solution as the steady-state solution. 
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